Efficient Planning for Factored Infinite-Horizon DEC-POMDPs

نویسندگان

  • Joni Pajarinen
  • Jaakko Peltonen
چکیده

Decentralized partially observable Markov decision processes (DEC-POMDPs) are used to plan policies for multiple agents that must maximize a joint reward function but do not communicate with each other. The agents act under uncertainty about each other and the environment. This planning task arises in optimization of wireless networks, and other scenarios where communication between agents is restricted by costs or physical limits. DEC-POMDPs are a promising solution, but optimizing policies quickly becomes computationally intractable when problem size grows. Factored DEC-POMDPs allow large problems to be described in compact form, but have the same worst case complexity as non-factored DEC-POMDPs. We propose an efficient optimization algorithm for large factored infinite-horizon DEC-POMDPs. We formulate expectation-maximization based optimization into a new form, where complexity can be kept tractable by factored approximations. Our method performs well, and it can solve problems with more agents and larger state spaces than state of the art DEC-POMDP methods. We give results for factored infinite-horizon DEC-POMDP problems with up to 10 agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planning under uncertainty for large-scale problems with applications to wireless networking ; Päätöksenteko epävarmuuden vallitessa suurissa ongelmissa ja sovelluksia langattomaan tiedonsiirtoon

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Joni Pajarinen Name of the doctoral dissertation Planning under uncertainty for large-scale problems with applications to wireless networking Publisher School of Science Unit Department of Information and Computer Science Series Aalto University publication series DOCTORAL DISSERTATIONS 20/2013 Field of research Computer and I...

متن کامل

Exploiting locality of interaction in factored Dec-POMDPs

Decentralized partially observable Markov decision processes (Dec-POMDPs) constitute an expressive framework for multiagent planning under uncertainty, but solving them is provably intractable. We demonstrate how their scalability can be improved by exploiting locality of interaction between agents in a factored representation. Factored Dec-POMDP representations have been proposed before, but o...

متن کامل

Anytime Planning for Decentralized POMDPs using Expectation Maximization

Decentralized POMDPs provide an expressive framework for multi-agent sequential decision making. While finite-horizon DECPOMDPs have enjoyed significant success, progress remains slow for the infinite-horizon case mainly due to the inherent complexity of optimizing stochastic controllers representing agent policies. We present a promising new class of algorithms for the infinite-horizon case, w...

متن کامل

Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning

Applications such as robot control and wireless communication require planning under uncertainty. Partially observable Markov decision processes (POMDPs) plan policies for single agents under uncertainty and their decentralized versions (DEC-POMDPs) find a policy for multiple agents. The policy in infinite-horizon POMDP and DEC-POMDP problems has been represented as finite state controllers (FS...

متن کامل

Approximate Solutions for Factored Dec-POMDPs with Many Agents1

Dec-POMDPs are a powerful framework for planning in multiagent systems, but are provably intractable to solve. This paper proposes a factored forward-sweep policy computation method that tackles the stages of the problem one by one, exploiting weakly coupled structure at each of these stages. An empirical evaluation shows that the loss in solution quality due to these approximations is small an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011